聊城榷钙教育科技有限公司

手機(jī)端
當(dāng)前位置: 91開(kāi)學(xué)網(wǎng)

 > 

知識(shí)點(diǎn)

 > 

名人名言

 > 

數(shù)學(xué)公式大全 完整版

數(shù)學(xué)公式大全 完整版

2024-12-07 08:46:50 644瀏覽

數(shù)學(xué)公式是人們?cè)谘芯孔匀唤缥锱c物之間時(shí)發(fā)現(xiàn)的一些聯(lián)系,并通過(guò)一定的方式表達(dá)出來(lái)的一種表達(dá)方法,能夠表征自然界不同事物之?dāng)?shù)量之間的或等或不等的聯(lián)系。 它確切的反映了事物內(nèi)部和外部的關(guān)系,是人們從一種事物到達(dá)另一種事物的依據(jù),并且使人們更好的理解事物的本質(zhì)和內(nèi)涵。

數(shù)學(xué)公式大全 完整版

小學(xué)數(shù)學(xué)公式大全

一、小學(xué)數(shù)學(xué)幾何形體周長(zhǎng) 面積 體積計(jì)算公式

長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2 C=(a+b)×2

正方形的周長(zhǎng)=邊長(zhǎng)×4 C=4a

長(zhǎng)方形的面積=長(zhǎng)×寬 S=ab

正方形的面積=邊長(zhǎng)×邊長(zhǎng) S=a.a= a

三角形的面積=底×高÷2 S=ah÷2

平行四邊形的面積=底×高 S=ah

梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2

直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

圓的周長(zhǎng)=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

圓的面積=圓周率×半徑×半徑

三角形的面積=底×高÷2. 公式 S= a×h÷2

正方形的面積=邊長(zhǎng)×邊長(zhǎng) 公式 S= a×a

長(zhǎng)方形的面積=長(zhǎng)×寬 公式 S= a×b

平行四邊形的面積=底×高 公式 S= a×h

梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2

內(nèi)角和:三角形的內(nèi)角和=180度.

長(zhǎng)方體的體積=長(zhǎng)×寬×高 公式:V=abh

長(zhǎng)方體(或正方體)的體積=底面積×高 公式:V=abh

正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) 公式:V=aaa

圓的周長(zhǎng)=直徑×π 公式:L=πd=2πr

圓的面積=半徑×半徑×π 公式:S=πr2

圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長(zhǎng)乘高.公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等于底面的周長(zhǎng)乘高再加上兩頭的圓的面積. 公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等于底面積乘高.公式:V=Sh

圓錐的體積=1/3底面×積高.公式:V=1/3Sh

分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變.異分母的分?jǐn)?shù)相加減,先通分,然后再加減.

分?jǐn)?shù)的乘法則:用分子的積做分子,用分母的積做分母.

分?jǐn)?shù)的除法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù).

二、單位換算

(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤

(5)1公頃=10000平方米 1畝=666.666平方米

(6)1升=1立方分米=1000毫升

初中數(shù)學(xué)公式大全

1. 圓的周長(zhǎng):C=2πr

2. 圓的面積:S=πr2

3. 矩形的周長(zhǎng):C=2(l+w)

4. 矩形的面積:S=lw

5. 正方形的周長(zhǎng):C=4s

6. 正方形的面積:S=s2

7. 三角形的周長(zhǎng):C=a+b+c

8. 三角形的面積:S=1/2bh

9. 直角三角形勾股定理:a2+b2=c2

10. 直角三角形的正弦定理:sinA=a/c,sinB=b/c,sinC=c/c

11. 直角三角形的余弦定理:cosA=b/c,cosB=a/c,cosC=c/c

12. 正弦函數(shù)的定義:sinθ=對(duì)邊/斜邊

13. 余弦函數(shù)的定義:cosθ=鄰邊/斜邊

14. 正切函數(shù)的定義:tanθ=對(duì)邊/鄰邊

15. 余切函數(shù)的定義:cotθ=鄰邊/對(duì)邊

16. 等差數(shù)列通項(xiàng)公式:an=a1+(n-1)d

17. 等比數(shù)列通項(xiàng)公式:an=a1×r^(n-1)

18. 平均數(shù)公式:平均數(shù)=(數(shù)列中所有數(shù)的和)/數(shù)的個(gè)數(shù)

19. 中位數(shù)公式:如果數(shù)列個(gè)數(shù)為奇數(shù),中位數(shù)為第(n+1)/2個(gè)數(shù);如果數(shù)列個(gè)數(shù)為偶數(shù),中位數(shù)為第n/2個(gè)數(shù)和第(n/2+1)個(gè)數(shù)的平均數(shù)。

高中數(shù)學(xué)公式大全

拋物線:y = ax *+ bx + c

就是y等于ax 的平方加上 bx再加上 c

a>0時(shí)開(kāi)口向上

a<0時(shí)開(kāi)口向下

c = 0時(shí)拋物線經(jīng)過(guò)原點(diǎn)

b = 0時(shí)拋物線對(duì)稱(chēng)軸為y軸

還有頂點(diǎn)式y(tǒng) = a(x+h)* + k

就是y等于a乘以(x+h)的平方+k

-h是頂點(diǎn)坐標(biāo)的x

k是頂點(diǎn)坐標(biāo)的y

一般用于求最大值與最小值

拋物線標(biāo)準(zhǔn)方程:y^2=2px

它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)準(zhǔn)線方程為x=-p/2

由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py


關(guān)于圓的公式

體積=4/3(pi)(r^3)

面積=(pi)(r^2)

周長(zhǎng)=2(pi)r

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

圓的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0


(一)橢圓周長(zhǎng)計(jì)算公式

橢圓周長(zhǎng)公式:L=2πb+4(a-b)

橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。


(二)橢圓面積計(jì)算公式

橢圓面積公式: S=πab

橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。

以上橢圓周長(zhǎng)、面積公式中雖然沒(méi)有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過(guò)橢圓周率T推導(dǎo)演變而來(lái)。常數(shù)為體,公式為用。

橢圓形物體 體積計(jì)算公式橢圓 的 長(zhǎng)半徑*短半徑*PAI*高


三角函數(shù)


兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)


倍角公式

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0


四倍角公式:

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)


五倍角公式:

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)


六倍角公式:

sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)


七倍角公式:

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)


八倍角公式:

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)


九倍角公式:

sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)


十倍角公式:

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)


·萬(wàn)能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]


半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))


和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB


某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數(shù)的關(guān)系x1+x2=-b/a x1*x2=c/a 注:韋達(dá)定理

判別式b2-4a=0 注:方程有相等的兩實(shí)根

b2-4ac>0 注:方程有兩個(gè)不相等的個(gè)實(shí)根

b2-4ac<0 注:方程有共軛復(fù)數(shù)根

幾何圖形的公式

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

圓的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積 S=c'*h

正棱錐側(cè)面積 S=1/2c*h'正棱臺(tái)側(cè)面積 S=1/2(c+c')h'

圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

弧長(zhǎng)公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

錐體體積公式V=1/3*S*H圓錐體體積公式 V=1/3*pi*r2h

斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng)

柱體體積公式 V=s*h圓柱體V=pi*r2h

圖形周長(zhǎng) 面積 體積公式

長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2

正方形的周長(zhǎng)=邊長(zhǎng)×4

長(zhǎng)方形的面積=長(zhǎng)×寬

正方形的面積=邊長(zhǎng)×邊長(zhǎng)

三角形的面積

已知三角形底a,高h(yuǎn),則S=ah/2

已知三角形三邊a,b,c,半周長(zhǎng)p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

則三角形面積=(a+b+c)r/2

設(shè)三角形三邊分別為a、b、c,外接圓半徑為r

則三角形面積=abc/4r

已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)

| a b 1 |

S△=1/2 * | c d 1 |

| e f 1 |

【| a b 1 |

| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC

| e f 1 |

選區(qū)取最好按逆時(shí)針順序從右上角開(kāi)始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會(huì)得到負(fù)值,但不要緊,只要取絕對(duì)值就可以了,不會(huì)影響三角形面積的大?。 ?/p>

秦九韶公式

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc為三角形的中線長(zhǎng).

平行四邊形的面積=底×高

梯形的面積=(上底+下底)×高÷2

直徑=半徑×2 半徑=直徑÷2

圓的周長(zhǎng)=圓周率×直徑=

圓周率×半徑×2

圓的面積=圓周率×半徑×半徑

長(zhǎng)方體的表面積=

(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2


長(zhǎng)方體的體積 =長(zhǎng)×寬×高

正方體的表面積=棱長(zhǎng)×棱長(zhǎng)×6

正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)

圓柱的側(cè)面積=底面圓的周長(zhǎng)×高

圓柱的表面積=上下底面面積+側(cè)面積

圓柱的體積=底面積×高

圓錐的體積=底面積×高÷3

長(zhǎng)方體(正方體、圓柱體)

的體積=底面積×高


平面圖形

名稱(chēng) 符號(hào) 周長(zhǎng)C和面積S

正方形 a—邊長(zhǎng) C=4a

S=a2

長(zhǎng)方形 a和b-邊長(zhǎng) C=2(a+b)

S=ab

三角形 a,b,c-三邊長(zhǎng)

h-a邊上的高

s-周長(zhǎng)的一半

A,B,C-內(nèi)角

其中s=(a+b+c)/2 S=ah/2

=ab/2?sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)